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ON THE SOLUTION OF THE TRANSPORT EQUATION WITH PERIODIC 
BOUNDARY CONDITIONS BY THE METHOD OF DISCRETE ORDINATES 
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ABSTRACT 

The one-dimensional transport equation in slab geometry with 
periodic boundary conditions is studied. It reduces to the inte- 
gral equation of the Peierls type. 
integral operator is estimated. 
algorithm for estimating the solution. 
methods of estimating the rate of convergence are described. 
estimates of some quadrature rules are derived by way of an example 
The numerical results confirm the convergence properties of the 
proposed algorithm. 

The spectral radius of the 
We anaiyze the discrete-ordinates 

Convergence is proved and 
The 

1. INTRODUCTION 

We consider the integro-differential transport equation in an 
anisotropically scattering plane-parallel slab 

(1.1) - vs + $ ( T , v )  = 5 J g(vsu*)$(T,v')dul + f(-r ,u),  
1 

-1 

where the phase function 

g(p,u') 1 G(cosX)d$' 
2T i" 0 

is averaged over the azimuth. Here, 
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324 MARSHAK 

The independent variables are T E [O,bJ, with b representing the 
optical slab thickness and 1.1 E [-1,11. The dependent variable 

$(T,u) represents the neutron angular flux, and f(?,p) is a given 
nonnegative function which represents the contribution from inner 
sources. 

9 

The parameter X is given. 
We add the boundary conditions corresponding to a periodic 

problem 

where 0 5 K ~ ,  K* 5 1 and Vo, V 
(outer fluxes). 

are given nonnegative functions b 

The purpose of this paper is to develop the discrete ordi- 

nates method for the boundary-value problem (1.1) and (1.2), to 

study convergence and to estimate the rate of convergence of this 
method. 

The plan of the paper is as follows: In section 2 we obtain 

the integral equation corresponding to (1.1) and (1.2) and analyze 

its solvability. The estimate of the spectral radius of the inte- 
gral operator is given in section 3.  

of the boundary-value problem is described in section 4. 
5 and 6 are devoted to the questions of convergence and the rate 
of convergence of the discrete-ordinates method. In section 7, a 
numerical example confirming the convergence properties of the 

algorithm proposed in section 4 is considered. 

The algorithm of the solution 
Sections 

2. AN INTEGRAL EQUATION 

We derive the Peierls integral equation by denoting the right- 
hand part in (1.1) by 
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SOLUTION OF TRANSPORT EQUATION 325 

Then, solving the  boundary-value problem, we can e a s i l y  obtain 

T-T ' -- 
lJ dT', p > 0, 

0 

b-T b 

[~,$(O,p)+V~(~l) le  ' -$/x(r' ,v)e '' d r ' ,  u < 0. 

'I-T ' -- 
(2.2) $(T,lJ)  = 

- 

T 

From (2 

(2 * 3) 

where 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
A
N
L
 
R
e
s
e
a
r
c
h
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
3
:
4
4
 
5
 
N
o
v
e
m
b
e
r
 
2
0
0
8



326 MARSHAK 

In operator notation, (2.4) is written as: 

0 (2.5) x = Rx + f , 

where the operator R is defined by 

and 

sign t, i = 0, 
(2.8) vi(t> = i = 1, 

i = 2. 

Here Qp is the space of functions f(T,p) such that f E Lp 

12 p 2 -  with respect to T and f E C 
tO,bl' 

with respect t o  11, with t-1,11 
II f ( I p  = max / I f  II - 

-l<U<l LP - -  
Let the phase function g be continuous on [-l,l]x[-l,l] and be 

normalized by the condition, 
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SOLUTION OF TRANSPORT EQUATION 327 

Then w e  have 

w m  
Lemma 2.1.  The operator R is compact i n  Q +Q . If 

then 

f o r  any K 1, K~ such t h a t  

+ 
Proof. 

where 

L e t  us d iv ide  t h e  opera tor  R i n t o  two opera tors  R = R +R-, 

and 

W e  show the  compactness of t h e  opera tor  R+ ( fo r  R- t h e  proof i s  

analogous). L e t  E > 0 and 

+ + 
E € 

The opera tor  R 

bounded and equicontinuous (kerne ls  KO and K 

is compact, because t h e  set {R x? is uniformly 

are continuous 1 
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328 MARSHAK 

because the singularity at p1 = 0 is absent). But 

F T  

+ as E -+ 0. 
of the sequence of the compact operators. 

From this it follows that R is compact as a uniform limit 

Next we estimate i t s  norm. The following inequality is easily 
obtained 

Taking into account the condition of normalizing the phase function 
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SOLUTION OF TRANSPORT EQUATION 329 

(2.9), the assumption (2.10), and the fact that if (2.12) holds, 
the expressions in square brackets are simultaneously equal to 1 

only at the point p' = 0, we arrive at the estimate (2.11). This 

completes the proof. 

Remark 2.1. In the case of K~ = K~ = 1, one can prove that 
the equality Rc = xc, where c is a constant, is valid. From this 

and from (2.13) it immediately follows that IlRll  = A. 
Srn+Q" 

3 .  THE SPECTRUM OF THE TRANSFER OPERATOR AND THE 
DIFFERENTIABILITY PROPERTIES OF THE SOLUTIONS 

Following Keller6, we shall estimate the spectral radius of 

the integral operator (2.6) by using sufficient conditions for the 
existence of only trivial solutions to the homogeneous equation 
corresponding to (2.5). 

Taking into account the nonnegativity of kernels K., i = 0.1,2 
we see that the inequality 

b l  

1 1 

is valid with 

It is obvious that 0 5 5, (u) < 1, i = 1,2, 1-1 E [O,l] and that - 
i 
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330 MARSHAK 

min cK (p) = l i m  5 (u) = l - ~ ~ ,  i = 1,2.  
O<u<l i p*+ Ki -- 

Let 6 = minll-K ,1-K I; then we  o b t a i n  from (3.1) t h a t  1 2  

Here we have used t h e  condi t ion  (2.9) and t h e  assumption (2.10) 

about t h e  p o s i t i v i t y  of t h e  phase func t ion .  

L e t  (2.12) hold; then  6 > 0. Since t h e  right-hand p a r t  i n  

(3.2) does not  depend on T and 1-1. w e  can conclude t h a t  

From th is ,  it follows t h a t  t h e  homogeneous equation corresponding 

t o  (2.5) has only  a t r i v i a l  s o l u t i o n  f o r  A < X , where 
* 

* 
(3.3) X = [1-6qE2(b/2)]-l. 

It i s  c l e a r  t h a t  q 5 1, s ince ,  i n  t h e  oppos i te  case ,  condi t ion  

(2.9) would be v io l a t ed .  

( equa l i ty  being reached only a t  t h e  po in t  T = 0 ) ,  it follows from 

(3 .3)  t h a t  X* > 1 (c f .  estimate (2.11)).  

Fur ther ,  as 6 5 1 and E2(-r) 2 1, T - > 0 
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SOLUTION OF TRANSPORT EQUATION 33 1 

Let us now assume that (2.12) holds and that, for instance, 
K~ = 1. Then eK Z 0 and K~ < 1. It is not difficult to check that 

1 
in this case 

and 

Lastly, if K~ = K~ = 1, then the condition X 1 guarantees 

the existence of only a trivial solution to the homogeneous equa- 

t ion. 

Thus we have proved: 

Lemma 3.1. Let conditions (2.9) and (2.10) hold. Equation (2.4) 
has a unique solution for all X < X , where * 

-1 
( 3 . 4 )  A* = [ l - q F  E2(b)] , 0 5 Ki < 1, K = 1, i,j = 1,2, 

j 
i + j y  

K1 K2 = 1. 

P,ll'E t-1,11 

l-Ki 

Here 6 = min{l-K1,1-~2), q = inf g(v,u') and E2(b) = 

exp(-b/p)dp, b > 0. I' 0 
Corollary 1. The operator R defined in (2.6) has a discrete 

spectrum with spectral radius estimated by 

* 
where A was defined in the lemma for different K ~ .  K ~ .  

The differentiability properties of the solution of the integral 
transport equation in slab geometry have been studied by many authors. 
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332 MARSHAX 

It suffices to refer to references 1, 4, 5, 16, and 20. Some of 
these results can be generalized in the setting of the above 

boundary-value problem (1.1) and (1.2) namely. 

Lemma 3.2 .  Let f be continuously differentiable with respect to 

T E [O,b] and continuous with respect to 1.1 E [-1.13. Let Vo, 

Then the ‘b ‘[-1,1] and ‘[-1,l]X[-1,1]’ 

tion (2.4) is continuously differentiable with 

the interval 0 < ? < b, its partial derivative 

solution (if the conditions of lemma 3.1 hold) 

* solution x of equa- 

respect to T within 

ax f3.r is the unique 

of equation 

* 

and the estimate 

is valid. 
One can carry out the proof of this lemma as in Pedas15 by 

using the well-known Lebesgue theorem and the mean value theorem. 
In reference 20, Pedas and Vainikko have defined more precisely 

0 and the class of the solutions for the case K~ = K~ = 0, Vo 

derived the estimate for the nth derivative of the solutions to 
integral equations with weakly singular kernels. 
proof can be extended to the case considered above, but it goes 

beyond the confines of the present paper. 

Vb 

Apparently their 

4 .  THE DISCRETE-ORDINATES METHOD 

Let us replace the integral in the right-hand side of (1.1) by 
some quadrature rule 
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SOLUTION OF TRANSPORT EQUATION 333 

- (N) rJ 
(4.1) % = > 0 ,  IKI = 1,2 ,..., N ,  1 % = 2, pK - pK , 

lKl=l 
(KI = 1,2, ..., Ny 

We obtain the following approximate boundary-value problem 

we obtain a set of integral equations 
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W S H A K  334 

( 4 . 4 )  

Here 

lil = 1,2y...,N. 

The solution of the system ( 4 . 4 )  with an arbitrary phase func- 
tion (provided K~ = K~ = 0 )  was studied in detail in reference 8. 
The averaging of the phase function over the azimuth has not been 
assumed there; however, the integral with respect to the azimuth 
was approximated by the Chebyshev quadrature rule. 
a convenient algorithm for the solution of the system ( 4 . 4 )  if the 

following restrictions are satisfied: 

We shall describe 

1) the phase function is isotropic: 

2) the inner sources are represented in the form: 

3) the points of the quadrature 

tion 

rule (4.1) satisfy the condi- 

= 1,2,...,N; 

4 )  the medium is absorbing, i.e. 

( 4  - 8) x < 1. 
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SOLUTION OF TRANSPORT EQUATION 3 35 

In the particular case K = K~ = 0 ,  Vo 5 Vb 5 0 ,  the proposed 1 
algorithm coincides with those in [ 7 ]  and [19]. Note that in 
reference 19, the isotropicality of sources (i.e.: w,B is a con- 

stant was additionally assumed. 

Theorem 4.1. Let conditions (4.5) - (4.8) hold. Then the solution 

of ( 4 . 4 )  can be represented in the form 

-d T (T-b)dK + i 'K' + aieB-KT N 

K-1 
I ,  "K" K + EKe N  xi(^) = 1 [cKe 

lil = 1,2, ..., N, T E [O,b], B = B(uK), IKI = 1,Z ,... .N, K 

- i -i 
K F, CKy dK, aKy a , K, (i/ = 1,2, ..., N are where the unknowns 

uniquely defined by the following conditions: 

f 

j = l,Z, ..., N I 
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with 

MARSHAK 

The following lemmas deal with the solvability of equations 
(4.10) - (4.12). 

2 Lemma 4.1. 
distinct real-valued, nonnegative solutions z1.z2, ..., z 

Equation (4.10),with z = dKy has exactly N pairwise 

-2 -2 -2 -2 -2 
lying in- N 

side the intervals ( 0 , ~ ~  1, (uN 9uN-l),...y(u2 yul 1. 
The proof of this assertion is given in reference 19. 

Remark 4.1. In (4.9) and (4.12), it is sufficient to substitute 
the arithmetical values of the roots of the solutions of equation 
(4.10), i.e. d We then see that the exponents 

in ( 4 . 9 )  and (4.12) have a negative degree; and, if N is enlarged, an 
overflow does not occur. 

- 
= Jz,, K = 1,2 ,..., N. K 

* 
Lemma 4.2 . The system (4.11) is uniquely solvable, and its solution 
aK and < have the form i 

and 

* 
This lemma was proved by N. Kolesnik--a student of Tartu State 
University. 
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SOLUTION OF TRANSPORT EQUATION 337 

Proof. After straightforward, but sufficiently unwieldy transforma- 
tions of the determinant of (4.11), we determine the solution by 
Cramer's rule. 

Lemma 4.3. System (4.12) is uniquely solvable for any A < 1. 

Proof. Indeed, in the opposite case it is not difficult to show 
that if the absolute term is congruent to zero, then system (4.12) 
has a nontrivial solution. Then the homogeneous equation corres- 
ponding to (4.4) also has a nontrivial solution; however, this con- 
tradicts (2.11) (see theorem 5.1). 

Remark 4.2. The restriction (4.7) can be omitted. In this 

case the algorithm (4.9) - (4.12) undergoes some changes, namely: 
the sum in the two last terms of (4.9) is summed up with respect to 
the set M = (K:@ 
the absolute terms F and F in (4.12) change. We shall not over- 

burden this paper by writing out all these variations but only refer 
to reference 10. There, the various modifications of the algorithm 
were described and justified for an example in a spherical trans- 

port equation. 

-1 9 lui 1 .  i = 1,2,...,N). Then system (4.11) and K 

Kj Kj 

Remark 4 . 3 .  Restriction ( 4 . 8 )  can be relaxed, requiring only 
A - < 1. 

( A  = 1, dl = 0 )  and then the determinant of system (4.12) will be 

equal to zero. In order to avoid this, we must look for the solu- 
tion of (4.4) in the form 

One of the solutions of equation (4.10) can be equal to zero 

It is not difficult to obtain new conditions for determining 
the unknown coefficients. 
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338 MARSHAK 

Proof of theorem 4.1. Substitute (4.9) into the set of equations 
(4.4) and equalize the coefficients of the linearly independent 

-d T (T-b)dK a,T 6-KT T/Pj - T h j  
functions e , e 
2, ..., N to zero. 
(4.12) and completes the proof of the theorem. 

, e  , e  , e  , e  , j, K = 1, K 

This leads precisely to the conditions (4.10) - 

5. CONVERGENCE 

Let us write equation (4.4) in the operator form 

N N  0 
(5.1) xN = P R x + f N ,  

N 

where 

and v.(t) was defined in (2.8). Here CPsN = {f:f = (f-N9-..sf-l~ 
fl’”.,fNL fi E L  P [o,b] 9 5 !? 5 / I f  IIp,N = max ]lf,l] and 

and the projector PN:QP+CPyN, (PNfIi(T) = f(T,ui), li] = 1,2,. ..,N. 
1< - 1 i ILN L 

In the case of the “usual“ plane-parallel problem ( K ~ = K ~  = 0) 
N N the convergence I$ +I$andx -+x has been studied rather thoroughly. 

is sufficient to refer to references 2, 12, 13, 14. In particular, 

Nelson and Victory showed the uniform convergence of 4 
any R from the space of functions continuous and bounded on [O,b) x 

{[-1,O)U(O,l]), provided that 

It 

N to C$ for 

Al) the quadrature rule (4.1) converges for any function con- 
tinuous on [-1,1], i.e.: 
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SOLUTION OF TRANSPORT EQUATION 339 

and 

A2) the phase function g is nonnegative (cf. (2.10)) and con- 
tinuous on the square [-1,1] x [-1,1]. 

Here 

N 
Thus 11 PN$-r$ 11 * 0 results. Then, using (2.1), (4.3) and 

.I.? m.N 
Nelson'sLL results, we have an analogous convergence for the solu- 
tions of the integral equations (2.5) and (5.1), namely 

11 PNX-xNIIm,N+ 0. It is not difficult to prove convergence for the 
remaining values of p E [lp) (see, for example, reference 17 for 
the isotropic case). 
N + m. 

N 
P,N+ as Hence, if K ~ = K ~  = 0 we have IIPNx-x 11 

N Let us represent the operators R and R in the form of a sum 
N N N  of the three operators R = R1 + R2 + R 

where 
and R = R1 + R2 + R3, 3 

b 
x 

(RiX)(',p) = y I Tq(T.T'.p)dT', 
0 

If assumptions Al) and A2) hold, the uniform convergence 
-+ 0 is valid, as N + m, In order to draw 

it is 
11 PA - P N R ~ N  ~ ~ ~ p ~ p  ,N 

N 
a similar conclusion about the convergence Ri + Riy i = 1,2 

enough to show that the integrand in (2.7) for i = 1.2 "is not worse" 
than that for i = 0. 
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It is  known t h a t  t h e  kerne l  K has a s i n g u l a r i t y  on t h e  diagonal 
0 

f = T ' .  L e t  us consider t h e  kerne ls  Ki, i = 1 , 2 .  The function 

m 
and decreases t o  0 a t  t he  r a t e  of 

[Osll 
belongs t o  the  space C 

e-b'' i f  1-1 + 0. 

have the  same s i n g u l a r i t y  a s  kerne l  KO, but only a t  t h e  po in t s  

T - T' = -b and T - T' = b ,  respec t ive ly .  

by ( 2 . 7 )  have a logarithmic s i n g u l a r i t y  ( i f  g i s  smooth enough) a t  

the  poin ts  T = T', i f  i = 0; a t  T = 0,  T' = b, i f  i = 1; and a t  

T = b ,  T '  = 0, i f  i = 2. 

2 From t h i s ,  i t  follows t h a t  t he  kerne ls  K and K 1 

The func t ions  T: defined 

N Thus, t he  convergence R .+Rf i sva l id  f o r  a l l  i = 0,1,2,  and 

+ 0 a s  N * OJ. It follows from t h i s  t h a t ,  N 

QP+CP,N 
11 'NR - 'NR 'N 1 1  
f o r  s u f f i c i e n t l y  l a r g e  N ,  t h e  opera tor  (I-P RN)-' e x i s t s  and is 

bounded f o r  a l l  A, which a r e  not c h a r a c t e r i s t i c  va lues  of equation 

(2.5). From the  equa l i ty  

N 

N -1 N 0 0  
(5.2) PNx-xN = (I-PNR ) [(PNRx-PNR P N x) + (P N f - fN)]  

follows t h e  uniform convergence xN + x s ince  f o  -f f o  f o r  any con- 

t inuous V Vb, f .  W e  have thus obtained 
N 

Theorem 5.1. L e t  t h e  conditions A l )  and A2) hold and le t  

Voy Vb E C l - l , l l ,  f E C~o,b lx[ - l , l l .  

equation (5.1) has a unique so lu t ion  f o r  any A < A 

and the  convergence PNx-x 11 

Then f o r  N su i t ab ly  l a rge ,  

(see ( 3 . 4 ) ) ,  
* 

N 
+ 0, 1 5 p 5 m is va l id .  

P ,N 
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j = 1,2 y...,Ny C is a constant > 0 ;  

phase function g E CL [-l,l]X[-l,l] - B3) 

Then using the technique of estimation proposed by Pitkzranta and 
Scott17 one can prove that there exists a constant C > 0 such that 

for any u in the range 0 2 0 5 1 and T, T I  E [O,bl, T $; T' f b; 
T The following estimate is a consequence of the uniform 
boundedness of the operators (I-P RN)-' and the preceding inequality , N 

T'. 

N 11 pNX-X I(P,N 5 CN-l(1 + log N), C is a constant > 0. 

6 .  THE RATE OF CONVER-GENCE 
N 

Let us consider the function (PNRx-PNR P,x),(T), IK] = 1,2,. . . ,N. 
We integrate it by parts. 
wieldy transformations, we obtain the equality 

By straightforward but sufficiently un- 

N (PNRX-P R P X) (T) = N N K  
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-1 

with boundary conditions 

by the algorithm proposed in section 4. The exact solution of the 
boundary-value problem (7.1) and (7.2) is + ( T , ~ J )  = (l+u )e 

from which x(-r,l~) = (l-p/Z+p -p /2)e . 
2 - T I 2  

2 3 - T I 2  

As a quadrature rule we choose the midpoint rectangular rule 
and compare it with the Gaussian quadrature rule, which yields an 
exact solution if N = 2 (as I$ is a polynomial of second order). 

The values x ( T , ~ J )  computed according to algorithm (4.9) - N 

= N-l,l~. = 0.5(2j-l)N-l, j = 1 , 2  ,..., N ,  are given 
The values computed using the Gaussian rule are given 

They are exact and correspond to the 

(4.12). where a 
in Table 1. 
in the row indicated by (*). 

exact solution x(~,p). 

j 3 

It is often necessary to use a quadrature rule to approximate 

the scalar flux 

Its values are shown in Table 2 .  

The values + (T ,p 1, I j I = 1,2,. . . ,N have been computed by formulae 
similar to (2 .2 )  - (2.31, and integral (7.31, by the midpoint 
rectangular rule, i.e. 

N 
j 

(The exact values of $ are given in the (*) row.) 
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Let us make conditions A2) and A3) more rigorous. We assume 
that 

Cl) the phase function g has a sufficient number of bounded 
derivatives of p (respectively of p ' ) .  

Moreover, we also assume that the given functions 

Vo, V 
(with respect to u) .  

and f have a sufficient number of bounded derivatives b c2 1 

Then it is clear that the solution x is such that - ( ~ , p )  1;; I %* 
where Cm are constants independent of ~ , p .  

estimate (3.5), we see that, from equality (6,1), the rate of con- 
vergence of P R P x to P Rx and correspondingly of xN to PNx (see 

(5.2)) asymptotically depends on, and only on, how well the quadra- 
ture rule 

Taking into account 

N 
N N  N 

(cf. (4.1)) integrates the exponential integral E2. Thus, we have 
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obtained the main result about the rate of convergence. 

N Theorem 6.1. 
are the solutions of equations (2 .5)  and (5 .1) .  Then there is a 

positive constant C such that 

Let assumptions C1) and C2) hold and suppose x and x 

Some estimates of the rate of convergence obtained in reference 

17 follow from (6.2): 

1) Let the quadrature rule ( 4 . 1 )  satisfy the conditions B1) 

and BZ), i.e. suppose the quadrature rule is only first-order 

accurate. Then 

1 1 ( l $ T ( ~ ) l  + 1$:(u)l)du = E z ( r )  + e-T 5 2,  Q T ( w >  = e -T/U , 

0 

and we get the following estimate 

2a Let the quadrature rule ( 

C 
+ I$i(w) )du 'y. 

.1) be Gaussian quadrature 

applied on r-l,O] U [0,1]. We use the result of De Vore and Scott 

(proposition 3.2 of reference 17). 
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where C depend only on m. Se t t i ng  m = 2 ,  w(u) = JI,(u), w e  obta in  m 

< CN-2. from which it follows ( 1  PNx-x I l m , N  - N 

2b) One can ob ta in  t h e  corresponding es t imate  i n  the  space 

C l y N ,  es t imat ing ,  by means of (6.2),  t h e  f i r s t  norm a s  m = 2 and 

the  second a s  m = 6 i n  t h e  following equa l i ty  

It is  e a s i l y  seen t h a t  11 1 1  

JI, 
ob ta in  the  equa l i ty  

< CN-4. Computing d i r e c t l y  
L[0,N-2] - 

( 6 )  (p) and s u b s t i t u t i n g  it i n  t h e  right-hand p a r t  of (6.3) w e  

But 

where K ~ ,  K = 1,2,. ..,a are cons tan ts  dependent only on K. 

t h a t  i t  follows t h a t  

From 

and 
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In t h e  same way, o r  us ing  t h e  i n t e r p o l a t i o n  theory  i n  r e f e r e n c e  

, P,N 3, one can o b t a i n  t h e  estimates f o r  t h e  remaining spaces  C 
1 < P < as w e l l  a s  f o r  t h e  Gauss r u l e  on [-1,1]. 

3) Let  us  r e t u r n  t o  i n e q u a l i t y  (6 .2) .  Following r e f e r e n c e  11, 

we s h a l l  c o n s t r u c t  a composite quadra ture  r u l e ,  namely: we  s h a l l  

d i v i d e  t h e  i n t e r v a l  [0 ,1]  on m + l  s u b i n t e r v a l s  by t h e  p o i n t s  

0 < al < a <a*.< a < a = 1. On each s u b i n t e r v a l  [ a  

K = 1 , 2 ,  ..., m we  apply  t h e  n-point Gauss r u l e .  

p o i n t s  a are chosen by t h e  r e c u r r e n t  r e l a t i o n  

K’aK+ll ’ 2 m m + l  
Then provided t h e  

K 

+ aK, K = 1 , 2 ,  ..., m-1, 2-4n 2n/ (2n+1) 
al = ’ aK+l = aK 

w e  o b t a i n  t h e  estimate 

m n  - 
1 1 %j e ‘IUKj i s  an  approximation of N Here, N = mn and E 2 ( ~ )  = 

K=l j=1 

t h e  exponent ia l  i n t e g r a l .  

- N 
Ilm,N - From (6.2) and (6.4) ,  i t  fo l lows  t h a t  11 PNx-x 

d(N11R2-2fi), which states t h a t  t h e  quadra ture  r u l e  c o n s t r u c t e d  

above i s  s i g n i f i c a n t l y  more a c c u r a t e  f o r  t h e  d i s c r e t e - o r d i n a t e s  

method t h a n  t h e  ones descr ibed  previous ly .  

where t h i s  advantage is obvious,  i s  d iscussed  and numer ica l ly  

poin ted  o u t  i n  r e f e r e n c e  11. 

The i n i t i a l  v a l u e  of N, 

Note t h a t  i n  t h i s  s e c t i o n  w e  let  C denote  a p o s i t i v e  cons tan t  

which may t a k e  on d i f f e r e n t  v a l u e s  upon d i f f e r e n t  usages.  

7. A NUMERICAL EXAMPLE 

We g i v e  i n  t h i s  s e c t i o n  a numerical  s o l u t i o n  of t h e  equat ion ,  
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-1 

with boundary conditions 

by the algorithm proposed in section 4. The exact solution of the 
boundary-value problem (7.1) and (7.2) is + ( T , ~ J )  = (l+u )e 

from which x(-r,l~) = (l-p/Z+p -p /2)e . 
2 - T I 2  

2 3 - T I 2  

As a quadrature rule we choose the midpoint rectangular rule 
and compare it with the Gaussian quadrature rule, which yields an 
exact solution if N = 2 (as I$ is a polynomial of second order). 

The values x ( T , ~ J )  computed according to algorithm (4.9) - N 

= N-l,l~. = 0.5(2j-l)N-l, j = 1 , 2  ,..., N ,  are given 
The values computed using the Gaussian rule are given 

They are exact and correspond to the 

(4.12). where a 
in Table 1. 
in the row indicated by (*). 

exact solution x(~,p). 

j 3 

It is often necessary to use a quadrature rule to approximate 

the scalar flux 

Its values are shown in Table 2 .  

The values + (T ,p 1, I j I = 1,2,. . . ,N have been computed by formulae 
similar to (2 .2 )  - (2.31, and integral (7.31, by the midpoint 
rectangular rule, i.e. 

N 
j 

(The exact values of $ are given in the (*) row.) 
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* 
3 

9 

15 

* 
3 

9 

15 

TABLE 1 

0.9375 0.6284 0.5145 0.3449 

0.9303 0.6227 0.5097 0.3417 

0.9367 0.6278 0.5140 0.3445 

0.9372 0.6282 0.5143 0.3448 

0.5 

1.5625 1.0473 0.8575 0.5748 

1.5553 1.0416 0.8527 0.5716 

1.5612 1.0463 0.8566 0.5742 

1.5622 1.0471 0.8573 0.5747 

-0.5 

MARSHAK 

* 
2 

5 

8 

11 

1 4  

0.6667 0.4469 0.3659 0.2453 

0.4339 0.3549 0.2380 0.6504 

0.6641 0.4448 0.3641 0.2441 

0.6656 0.4461 0.3652 0.2448 

0.4465 0.3655 0.2450 0.6661 

0.6663 0.4466 0.3657 0.2451 

TABLE 2 
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Remark 7.1. In the course of solving the set (4.12), we note 
that it is worthwhile to multiply the matrix of the system by its 

conjugate matrix. In spite of an increase of the condition number, 

all eigenvalues will become positive, and the system is easily 

solved by any method (for example, by the method of straightforward 
Gaussian elimination with partial pivoting). 

a. CONCLUSION 

The present paper deals with the integro-differential trans- 

port equation with boundary conditions corresponding to the periodic 

problem. 
of the Peierls typeaccording to the following considerations. 

We have converted this equation to the integral equation 

Firstly, in this case, the algorithm of the solution looks 
more simple and is more easily programmed for the computer. 
the study of convergence and especially the rate of convergence is 
more convenient in terms of integral operators (in particular, opera- 
tors with weakly singular kernels). And thirdly, there are integral 
equations of radiation transfer (for example, in some models of 
broken clouds) that have no integro-differential analogue. 

Secondly, 

This paper describes the method which makes it possible to 

estimate the rate of convergence using any quadrature rule. The 
question about the optimal quadrature rule remains open, even in the 
one-dimensional case. This problem, as was shown, is equivalent 
(with some restriction) to the selection of a quadrature rule which 
approximates the exponential integral E2 in the optimum manner. 
author would like to point out that the composite quadrature rule 

constructed in reference 11 surpasses the Gaussian and Clenshaw- 

Curtis rules recmended; e.g. in references 17 and 18. Unfortu- 

nately, the numerical example proposed in this paper does not 

reflect this advantage because the solution @(T,V) in this 

example is a polynomial with respect to p. 

The 
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